Control of Oxidative Sulfur Metabolism of Chlorobium limicola forma thiosulfatophilum.

نویسندگان

  • D Cork
  • J Mathers
  • A Maka
  • A Srnak
چکیده

A metered blend of anaerobic-grade N(2), CO(2), and H(2)S gases was introduced into an illuminated, 800-ml liquid volume, continuously stirred tank reactor. The system, described as an anaerobic gas-to-liquid phase fed-batch reactor, was used to investigate the effects of H(2)S flow rate and light energy on the accumulation of oxidized sulfur compounds formed by the photoautotroph Chlorobium limicola forma thiosulfatophilum during growth. Elemental sulfur was formed and accumulated in stoichiometric quantities when light energy and H(2)S molar flow rate levels were optimally adjusted in the presence of nonlimiting CO(2). Deviation from the optimal H(2)S and light energy levels resulted in either oxidation of sulfur or complete inhibition of sulfide oxidation. Based on these observations, a model of sulfide and sulfur oxidases electrochemically coupled to the photosynthetic reaction center of Chlorobium spp. is presented. The dynamic deregulation of oxidative pathways may be a mechanism for supplying the photosynthetic reaction center with a continuous source of electrons during periods of varying light and substrate availability, as in pond ecosystems where Chlorobium spp. are found. Possible applications for a sulfide gas removal process are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress.

A gene encoding a product with substantial similarity to ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) was identified in the preliminary genome sequence of the green sulfur bacterium Chlorobium tepidum. A highly similar gene was subsequently isolated and sequenced from Chlorobium limicola f.sp. thiosulfatophilum strain Tassajara. Analysis of these amino acid sequences indicated that...

متن کامل

Diversity of cytochrome bc complexes: example of the Rieske protein in green sulfur bacteria.

The Rieske 2Fe2S cluster of Chlorobium limicola forma thiosulfatophilum strain tassajara was studied by electron paramagnetic resonance spectroscopy. Two distinct orientations of its g tensor were observed in oriented samples corresponding to differing conformations of the protein. Only one of the two conformations persisted after treatment with 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone. ...

متن کامل

Crystallization, preliminary crystallographic analysis and phasing of the thiosulfate-binding protein SoxY from Chlorobium limicola f. thiosulfatophilum.

The 22 kDa SoxYZ protein complex from the green sulfur bacterium Chlorobium limicola f. thiosulfatophilum is a central player in the sulfur-oxidizing (Sox) enzyme system of the organism by activating thiosulfate for oxidation by SoxXA and SoxB. It has been proposed that SoxYZ exists as a heterodimer or heterotetramer, but the properties and role of the individual components of the complex thus ...

متن کامل

Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna-Matthews-Olson protein) gene sequences.

A new taxonomy of the green sulfur bacteria is proposed, based on phylogenetic relationships determined using the sequences of the independent 16S rRNA and fmo (Fenna-Matthews-Olson protein) genes, and supported by the DNA G + C content and sequence signatures. Comparison of the traditional classification system for these bacteria with their phylogenetic relationship yielded a confusing picture...

متن کامل

Stable sulfur isotope fractionation by the green bacterium Chlorobaculum parvum during photolithoautotrophic growth on sulfide.

Growing cultures of the green obligate photolithotroph, Chlorobaculum parvum DSM 263T (formerly Chlorobium vibrioforme forma specialis thiosulfatophilum NCIB 8327), oxidized sulfide quantitatively to elemental sulfur, with no sulfate formation. In the early stages of growth and sulfide oxidation, the sulfur product became significantly enriched with 34S, with a maximum delta34S above +5 per tho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 49 2  شماره 

صفحات  -

تاریخ انتشار 1985